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A qualftative investigation is made of a system of nonlfnear third-order diff- 
erential equatiana, being a model of a phase syrdmizatlon system. The 
existence fs established of bifurcation surfaces separating the parameter space 
into domains for whose points the system is globally asymptotically stable, 
contains cycles, has a complex structure (contains a denumerable set ofsaddle 
cycles), etc. 

l, Introduction. Basic rerults. Thetashofanalysfngatypical 
phase synchrordzation system reduces to the fnvestigation of an operator equation of 
%e form El& 

where Q, is the phase, P (cp) b aperiodic nonltnearity, K (p) is the transfer fimc- 
tion of a low-frequency filter. The task of a qualitative investigation is the complete 
separation of the parameter space into domafns corresponding to different qualitative 
trajectory patterns in phase space and has been solved fn the case of a se&d-order 
& (1.1)[2,3Joftheform 

(1.2) 

for the class of sinusoidal functions ocatring in applications, 
In the case of &, 0. I) of third order and higher this task of “complete separat- 

ion” can become meaningless because in pdnciple complex structures can exist in 
the phase space, while domains filled with an l&rite set of bifurcations [4] can 
exist in the parameter space. Hue, instead of a complete separation it is possible 
to state the ~~~~ve ~V~~gaUonp~~rn ln the following way: 

P r o b 1 e m 1. Mcxmine a separation of the parameter space into domains 
in each of which the dynamic systems is either a Morse -Smale system (a stmctur- 
ally-&able system with a finite number of equilfbrium states and periodic motions) 
orasystemwfthaninfinitesetofperiodicm&io~ 

This problem relative to (1, U is of intereat in connection with separation the 
domain K of parameters, for whcae points Rq, (1, U It globally ~~~~~~y 
stable, and the parameter domafns adjoining it (see 15-73 and others for sufficjient 
conditions for the global asymptotic stability of Es. (1.1)). The question on the 
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b~maK0~ of a saddle separafxix Ioop of a &M-order Eq. (1.1) with a transfer fimct- 
ion X (p) (written in a form s&&b& for use subsequantq) 

was numerically analyed in ES, 93 by the adjusting m&b&. However, both Problem 
1 as well ab tfre cpledicm on the boundary of domain X wue unresolved in &I, 93. 

In the degenerate case of Ecp. (1.1) and (1.3) with A = 0, corresponding to 
the synchru&aKon system sought, when domain R is abeent for ‘y > 0, a qualitat- 
ive inve&gaKon of (1.1) and (1.3) was made fn @Of. For an Eq. (1. U of arbitrary 
ordez and, in parKcUr, for %e case of(l.3) tith 5 < u and certain other additional 
coMza&& ~~eof~~l~a~~~~a~eof Problem1 
w~~~~~~]by~~~g~of~~~ 

Below we investfgate cptalftativaiy a third-order system (1.11, (II 31 of the form 

cp’ = y, y’ = z, z’ = b-’ [y - P (9) - hy - d”y - z] (I.. 4) 

in tbc domain D = (y, a, b, h) of positive parame&rs. We atume that the funct- 
ion F(q) E es and sat&f& the CondiKons 

~t~)=~~~+~),-~(~)= F (-q), F’ (9) > 0, cp Ez (---rpo* cpo) @* 5) 

F’ (9) < 0, 9, E (cpo, 2n - cp& F’ (plo) = 0, F (%) = 1 

F” (cp) < 0, tp E frpo, $1 F”’ (cp) c Q, tp E C---9Pe* %) 

Q&r these cortdwons system (1.4) with y < 1 
= 9% (1;)s Y = z = 0) and oe (cp = 

has two mbrium state+% 0, (9 
9% (Y), y = 2 = a), where % ad cpz 

are rootp of the equaKon y - F (rp) = 0 on the half-open ktervals lo, Q)*) and 
(cp,, 2~~1, respectively, The system% phase space G = S’ X Rs is cyliikdrical . 

We Mroduce the notation m (Y) = 8” (91) and n (y) zz -F’ (9%). We shall 
designate nonwandering trajectories of oscillatory type as o-trajectork, of rotary 
type with podKve rotaKon of phase cp as pl-trajec@r& and of rotary type with 
negative (r&vurrt) rot&M of phase cp as cp” -trajectork 

When b ==O ~~(~~4}~~a~~~a~ 1 system corrqood- 
ingbEQs. (1.2X ~~~~~rati~of~~am~~~e DO =@&O, 
r>, 0, - 00 < a < 03) has bttn obtained in [3] (for F = sintg suet a separatson 
intheplene A, d= -U&-X was given by BauKn I$%. Sfnce this wpmation fr used 
below, in Fig. 1 we present its qualitattve f8rm in the pme 6, r), a 5 con& for 
(21 88 > 0 t (2) Q = O,~~~~<O, ~~~~~~~~~~of~y~d~ Sx X 
R by the traje&odes of Eq. (1.2) is shown fn Fig. 2 fthe strueturrcs Lob&M by the 

letters K, tat . . ., cmpnd to the ~~~ d4matat aid by thra same fettezs 
in Fig* 1). Stntcture K cormpa& to the &$obal ary~?tofic &hfiiQf of &. Cl. 2) t 
The b~~~~~ &l, l&,* and l&O c d to tix.c bfircaKons of the 

+j +and a-lq+s of the separatxix, reqectfvely. 
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(5) (61 (7) 

Fig. 2 

When a > 0 the saddle fndez of the saddle c~g~s~gn~d divides IIs into 
two park, for one of which a stable cp’ -cycle goes into q1 -loop, while for the 
other an amstable ‘p* -cycle $s generated from the cp’ -loop, merging then with 
a stable q+ -cycle on pass@ thraagh the ~lrface CO’. For A = --am(v), a<0 
(the dashed line in Fig. X3)), a change of stability of 0, occurs, as a result of 
which a stable (the Liapunov index is negative) 0 -cycle is generated, going into 
an o-loop. 

As a re+t of investigating system (1,4) it has been established that the bifurcation 
surfaces l&t’ (here and below, j = 0, 1, 2) are preserved under an increase of 
parameter b from zero. More precisely, there holds 

Theorem 1, Foreacbfimctkx~ F(a;) begs in 0 thereurist 
&aces I&! = (15 a, b, h 1 pj (a, b, A, y) = 0) corrqondingto the o- cp’- 
and $-loops of the separaMx of the saddle of system (1.4). The dispo&tion’ of 
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I&’ on the pIaIle (h, y) (b, a = COIlSt) fOZ b <a ~~~~v~y c0&lCides with 

~~~~~~~cb~~~~~~c ITa’ of~km(1.2)titha>O,forb = cz 
it colncfdea titb the d&pdtion of ctlryt RI’ of system (1.2) with 
for b>a thedirpodtionof l&! 

Q =, 0, while 

(1.2Mh a<O. 
coincidea with the dispositioll of Ix,’ of system 

Theorem 1 is proved in sect, 3. 
The diffennt nsrture of the bcbavia of the trajcctdcs of system (l, 4) wxdcr the 

collapse of the separatdx loop in a neighborhood of surface nb3 is dc&rmincd by 

ShilWcov’s horem [12,133. WC separate. the parametu: space D into thzec domains 

CT’ = {y, a, b, h 10 Q y < 1, b > a, I. > n (y)(b + 4 - 2~“) 
0% = {y, a, b, h 1 n (y) > b-2, b > aI k < f (a, b, 4, a2 > (n”)-l), 

no SE sup n (y) 
yE[O. 1) 

(J’ = (~9 Q, b, h 1 n (19 > b *, b > a, f (a, b, n) < h < n (y)(b + 
a) - Zb-‘) 

where f (a, b, n) is a positive root of the equation & (h - an)3 - (h - an)’ 
+ 18bn (A - a) + 27ra”b’ - 4n = 0 relative to h . If these domains divide 
the bifurcation surface of a separatrix loop iuto three pieces, then, according to 
Cl2, X3], the bifurcation pxopeztfes of each of them having the cod&w&n 1 are 
Wt. Figure 3 IlWtrates thue pqwties by example of qmtezn (1.4) with b = 

Q and a* > (R~)-~, when the bifurcation 
surface fl$ intwwta all tlttQa domains 
fl, @’ and @. In partWar, the condit- 

ion n,fne+o yisdt theezistenceof 

domaI&={r, a, b, h ft ~~u,~.~,y~~<a~~~ 
containing an infInite set of bffircatioos. 
For parameter valuer from domain a,' 
system (1.4) has a complex trajectory stmc- 
turc containing, nuplarcttvcly, a denmwrab- 
le set of saddle 05 q&and q’ -cycIes. 

using the p%qwftiea of eq&wkm statea 
and of separat&c loopr, Lemma 2.1-2.3, 
and Theowm 2 on the ifmtt set Cfor brevity 
it is caIIed a stabIe ‘p’ W)-cycIe in IlllL 
with the aid of a cantirniau vadotien of 

Fig. 3 parameters fkom some stmc~ to athezs we 
~~~~e~c~ ofthe M- 
furcation sets d&t&t from 

1) When b>a inD uirttastwface~ co gtothcchaflge of 

stabiItty of ei@librium state 0, and to the gcnsratibn of a stable OqcI& when 

b, a = comt the dirpwdtlon of R on the ptant (k, y) qualitatively coincides 
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with the disposition of curve h = -am (y) (a ( 0) of system (1.2) (the dashed 
lfne fn Fig* X3))* 

2) Iu domain o” exist bffircatiou sets Cd on wbi&. beiirrcatious of the o-r 
‘pl aud (p” -cycles take place. The biturcation sets C$ are bffircatton surfaces 

of multiple cycles if the number of cycles in the toroidal domains is takeu mod 2. 
3) Under a variatiou of parameters from domains al,l to domaius At (i = 1, 

2 7) in whi& the corn;rponding cycles are abseut, the complex structures 
.A.; ’ Corrrtqucntly, btfurcation sets exist, being the bamdaries of domains 0: 

z) d,” cceresponding to the complex structures of system (t.4). The nature of the 
boundaries of domains &Ii is not clear, just as the relative dispositiou of thae 
domaiusandofsets C$ isnotclear. 

Let us separate space D , assumiug for simplicity that CJ is singletwklued. 
If the surfaces II43 are wholly located iu domains d and a” (for fnstanc~ when 
a* < (n”)-rl b < -2% + 14-W + 2 (r&y]+ us = (no)-1, 8 = a)* 

thenthesurfacea Cd are additional blfhrcatiars. In this case the qualitative form 
oftheseparatfonswheu b,a = 

at (2) b>a. 
wrist isshownin Fig. 1 for (I) b < a , (2) b 

Itfsth+rameasinthctwo_dimutd5onalcasewhen b = 0 
&mxi (1.2& The surface Cbx a&ins lTbr on the ret l3$ n l?, where r 
is the - bamdary of domains (J= and u* (Fig. Xl)), In additiou, C$ can 
also adjoin n$ at points for which iu G the separatdx W,u approaches saddle 

0, along a nonfundamental direction, To denote the separation domaius of space 
D and the separation structure of space G comspondingtothctedo~wcretain 

the notation of the corresponding domaius and structures of the two-dimeusfonal systemz 
JL L - -(see the dmcripfiax of stzuctmes K, L%, . . . in [ll& When sxrface 

rid ~~~~~~~~ Qu,o’and oc(forinstancewheu a*> 
(no)-‘, b = a), the separation of. D is shown in Fig. 4 for (I) b ( a , 
@)b>a.Thedomaius DcJ 

(2) b = a , 

are shown hatched, while lhe bifurcation surfaces 
CJ are by conventmu depicted adjoiuing 0:. The qualttative patterns for 

domaius 2,2, . * ., ?’ in Efg. 4 are easily re-established by passing iuto them from 
thedomains &M,,L,,.*. through the appropriate bifurcations. For example, 
four cycles are generated by passing from & into domain 2 through po&rt c : two 
stable gr’- and qs- cycles and two saddle q+- and ei” ~yclea. Nnaius l-7 
vanishasparameter b inueases. 

The parametex domain K corresponding to the capture domain of the phase 
staffs system is delfneated by bifurcation surfa- of the separatrix loop 

@I$), of the multiple (p’ -cybxs (c&, of the change of stability of equilibrium 
state 0, (R) , and by the bifurcattons of the (p’ -trajectories, leadtng to the origtn 
of the complex structure. Thus, we have succeeded in obtaining an overall separat- 
ion of the parameter space of system (l.4) as a whole by using the proof of the ex- 
istence of separatrix loops, lemmas 2.1-2.3, Theorem 2 and assertious ftom D2, 
133, although with certaiu restricf&urs couuected with the prmcipal dif&uties fnher- 
ent in ~lU~rn~~a1 systwnt. 
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Fig. 4 

2. Investigation of the system. System (I.. 4) is examined below : 
in the parameter domain D = {y,a,bJ~O<y<1, b>a, h>O}. 
By a change of variables z and y and of time 

2= u - b”8y - t&-l IF (cp) - y], y = Q%&-%E(H, t = 
b’ha-‘iq 

retaining the previous notation, system (1.4) is transformed to the form: 

tp’ = y, y’ = y - F (q) - (ab)-%y + ba% 

v’ = -(ab)+* fl - i3)u - bd fiY - 6 + hb)y + 
b-l (ab)‘/* (a - b - aS)[F (cp) - yl- 

6= 
2-x - (4-l - hb)‘lr, A. < (4b)-’ 

ha, h > (4b)-’ 

(2.1) 
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Let US analyze System (2.1) eC&IiValent to system (1.4). For h > (&)-’ we consider 
the matching system 

y' = -a'l:b-Wy + ba'lv + y -f- sgn v 
v’ = -(ab)“li (1 - LZ)V + Lb-’ (U - b - ha2)Y - 

b-’ (ab)+ (a - b - b2)fy + sgn rt> 

(2.2) 

System (2.2) is a piecewise-linear system, con~u~ly spliced when v = 0 ,, speci- 
fied on the phase surface (9, v). The trajectories of system (2.2) generate a mapping 
of the segment q = (y, Y 1 y E ~-~-lu-*/~b*/z (1 - y), - cm), v = 0) alto 

itself. It can be shown that this mapping has a unique stable fixed point cormspond- 
ing to the asymptotically stable cycle c” of system (2.2). whose equations in para- 
metric form are 

u z sgn vr-lb*dl, (ha2 + b - a) exp 1-2-l (ab)-WI sin r6 

Y =1 sgn VA (2-l (ab)-‘WL (2hu - l)sin 78 - 
cos rtffexp f-2-l (ub)“431 + k%z”~*b”‘* (1 + y sgn v) 

A zz ~-~b’~;u~/$ (1 - exp I-n (4kb - f)““])” 

r SE 2-l (ub)+ p&b - lp, 0 < 6 < 3t 

(2.3) 

The trajectories of system (2.2) in space G form cylindrical surfaces whose directrices 
are formed by the trajeotodes of system (2.2). while the generators arc parallel to the 

‘9, -axis. By G, we denote the sub-domain of G, bounded for h > @b)-r‘ 
by the surface 2’” = c” X s1 = {cp, Y, v 1 cp E S1, y, v E (7) and for I Q 
(4b)-l by the surface 2’” = {cp, yr v 1 cp E S, y = vi*, v = vto}, where 

y,” = (A)* a-“84 (1 - 8)“b (ab)‘/* (1 + (-i)i 7) 

vto = (4)’ b-l (4 - 8)“‘(aS -j- b - a)(4 + (-i)*y), i = 1, 2 

L e m m a 2.1, The set S-2 of nonw~d~g trajectories of system (2.11 is wholly 
contained in domain GV. The vector field of system (2.1) on T” is directed to 
the interior of G,. 

P r o o f. For h < (4a)-1 we consider the direction function 10 = 2-W. Outside 
the domainG, = G I-I (v%O < ZJ < orO}the derivative P’ , taken relative to system (2.1-x 
is negative and, consequently, the trajectories outside domain GI as t - OQ, inter- 
secting the levels v = coust, pass into GI and do not leave it. Then for any semi- 
trajectory (q~ (z), v (t), EI (t)j cs Gl the fulfilment of the inequalities (-l)i~’ (t) < 0 
for (-i)‘v > (-I)*@ follows from the second equation in (2.1). Fromhere and from 
the behavior of the trajectories of system (2. I) outside domain GX follows the lemma’s 
assert&X when n Q (4b)-’ . Consider the domain X > (4&)-l. We compare the 
vector fields of systems (2.2) and (2.1) 

(2.4) 
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From (2.4) we get that the trajectodea of sytt%m (2.1) outside G,, intersecting with- 
orft contact the eylW&al tiae%% formed by tbe trajtctoria of system (2.2) as t -. 

OQ, pass into GS and do not leave it. 
Corollary. ~e~~a~~~ 

(2.5) 

are valid for any ~e~traj~~ (9 ($1, g (& v <t)) E & of system (2.11, 
Equilibrium states. whoa h>?~(v)(b--@) thepoint Ox isstable 

(M < 0, Re P&+ < 0), tile wbt~ A. < m (0) (5 - a) it is WBWI~C (x&l) < 

0, Re xF’% > 0) (~(1) and &(*j are the roots of the &aza&%rWe cq~tion 
of syrtcm (2.1) for 0, and 0, , rerpectfvely, n = 1, 2, 3),, The vadatfon of 
tbe walltat&% srtrucftuz of the II&~ of equUbrium state o1 when passing 
into D through the at&ace R = (y, a, b, h 10 < Y < 1, b > a, h = m (?r) 
(b - a}) tr det%rmU%d by the sign of the f&st Liapsmev index [14] which fn the cas% 
being examined has the fcwm 

L = c wh (5 + 4ahn)F” (CpJ - ((ab)-‘/* + 8m fb - a) “f- (2.6) 

6bn)(F” (n))‘l, C > 0 

By vfrbte of (1. s), L < 0 and, c4xis%qncDtlyI undtl the cba%ge in stabilfty a *gle 
stable 0 -cycle is generated from 0,. 
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As = {Y, a, b,hlO<y<l, b =a,h>Ol 
A, = iv, a9 b, h 10 < r < 1, b > a, h > bs&zf: WI 

We consider a Liapunov function [5] and its derivative relative to system (2.1) 

I 
2’l.u~’ -& 2-la (au - 8y)2, $ =i a%, b = a 

V”= 2-lb-* [b’v + (ab)‘/~ (1- a).~]” + 2’%y* + 

+(ab)“V(cp)-YIY, B- I+% b>a 

V’ = 
1 

-(av-&y)2 b=a 

- b-l (ab)“*(h - bF’ (q)) y2 - (ab)Q [F (cp) - y]P, b > a 

We obtain the next statemt with the aid of this function. 
Lemma 2.2. System(2.1) 
l. has the structure g fn the parameter domains Al and A,; 
2. doesnot have o-cyclea in As and A, , while the domain 

belongs to the domain of attraction of the stable equilibrium state &; 
3. does not have qs-cycler in As and A,, 
Matching system. Wecauidertheauxiliarysystem 

q, l = y, #* = y* - P (ql) - h,y, v’ = 0 (2.7) 

Foreach v= const system (2.7) is system (1.2) with a = 0. The separation 
of the parameter plane (h,, T*) has been shown in Fig. l(2). The bifurcation curve 
Yl (A*) (a (A”) = 1) corruponding to the @-loop divides the plane (h,, y*) 
into two domains K and Ml. ln space G, the trajectories of system (2.7) form 
surfaces not cha@lIg with respect to v . By WJ we denote the surface formed by 
the cycle of system (2.71, existing in parameter domain Ml, while by wlu and 
w1° (ws= and ws@) we denote parts of the surface, famed by the a - and u-rep- 
aratrices of the saddle of system (2.71, located in the domain G,,l (Gbs). We ex- 
amine the surfaces w,” and tV,m before intersection with cylinder P, = {cp, y, 
v I cp E S’, v E RI, J = 0). 

In D we intrctduce the subdomains 

A I= wdJln -+ +ri<v<d-- 
t ( > T/;;i; <ho) 

4= yIa,h~I-~+p~<y<l,- 
( &Sh 

0. 
a T-Y1 

( > 
j$ + 
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Pi < Y <n (-&) + Pi, -j& < x0} 

1 = 1) 2; 1 = 2, 3; 

L e m m a 2.3. In the parameter domains A, and AL\, (A,) system (2.1) 
does not have qs (l(p’) -cycle% as t -+ - co the manifold W’, intersecting P, 
goes off to infinity in domain G,s (G,‘). 

P r o o f. Let us compare the vector fields of systems (2.1) and (2.7) when k* = 
fub)-% and Y* = Y - !.Q (V+ = Y + ul). Using Lemma 2.1, we get that in the 
parameter domains As and As (A,) the trajectories of system (2.1) intersect the 
surfaces Wi* and Wia on the side of increase (decrease) of coordinate Al* without 
having contact with them. We establish the lemma’s assertion by taking into account 
that surface Wp”” (W,“) goes off to infinity in domain GOP (G& Fig. all), @I4 
while by virtue of the equation ~1’ = I in (2. lf the coordinate Q, decnasts(increases) 
along the trajectories when Y < 0 (Y > 0) . 

3. Bifurcations and cycles. Ex2mtning system (2.1) in the space 
G = {cp, y, u 1 q. < tp < qre -I- 2n, (g, v) E R9), we prove an auxiliary 
lemma. 

L e m m a 3. 1, Ln parameter domain D the separatrix ws” intersects the 

~7:;; {Y, ~1 a, = CPO, (?/, n) E r! on the side 
2 

Cp > T; at_‘;“y p$rbmz f& 
and the separatrix WI mtersects the plane - 

- %,(II,u)ER~} ontbeside ~,<2n-% ataepokt M~(~l,v,)~ 
G,‘; the surface W* intersects the plane Pa and Ps along, respectively, the curves 

N: (Y = Y: (V)) and Ns’ (y = y2* (v)) going off to inftnite and dfviding each of 
the planes lnto two parts. 

P r o o f. We consider the Liapunov function V in the domain Go = I% Y, u 
\tpOBcp~2~-- ‘Poe (Y, v) E Rq . Since accoiding to (1.5), F’ (cp) 6 0 in Go, 

the derivative Y’ < 0 and, consequently, system (2.1) does not have @-oyCl%s in 
G Hence by virtue of that fact that coo&rate ~1 tncraases (dmxewesl 

the ~a~ectories of system (2.1) when Y > 0 (y < O), while SepsraMx 

arOng 
tv,* frv,? 

locally goes in domain GII 1 (G,?), it follows that separat& WX“ ( W$‘) in&se&s the 

plane Ps (PI) at point Ml (MS). Let us consider the disposition of surface W’ in 

Go . By vfrtue of (1.5) a number 1~ > 0 exists (for example, Id = 1 for F = 
sin cp ouch that the estimate 

I% (cp) < F &4 - Y B &fFI C3.1) 
II (cp) z -1 - Y + lo I-q + 2JI - cp,), J2 f@ = i - Y + 10 o-f)0 - tp) 

is valid for any ‘P E [To, ~JI - Cool l 
We consider the linear systems 
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cp e = y, y’ = -Ii (up) - (Ub)-‘f’6~ + a-‘bV 

v’ = -(ab)-“’ (1 - 6)~ - b9 (6’ - 6 + hb)y + 
b’” (ab)-“’ (u - b - a6)Zj (cp), i = 1, 2 

(3.2) 

In parameter domain D each of the systems in (3.2) has a saddle equilibrium state 
each, whose separatrix surface is the plane W,* . Plane Wi’ joins PI and P, and 
divides each of them into two parts. By virtue of (3.11, when I # 0 the trajectories 
of system (2.1) intersect the plane WI* (W,l) on the side of decrease (increase) of 
coordinate Y when Y > 0 and on the side of increase (decrease) of coordinate y 
when B < 0. Since on the circle 6 the equilibrium state 0, lies between the 
equilfbrium states of systems (3.21, the surface W’ is located in G,, between W,* 
and W,* and, consequently, joins the planes Pz and Ps, separating each of them 
into two parts. 

From Lemmas 2.1 and 3.1 it follows that the separatrix wr” (ws”), intersect- 
ing plane Ps (PI) on the side cp < 2~ - cpg (cp > cpa), hits either onto plane 
PI (J’s) on the side 9 < 90 (cp > 2% - cpo) or, intersecting cylinder Pa, 

onto plane Pz (PJ on the side cp > %r - 00 (tp < tpo) or 0~0 CyWder PO and 
can intersect J’s andi Pa (P,, and Px) several timea. 

BY 4” (YIU, VI,? (V (&u, f#) we denote the ltmit ‘point for the points 
at which sepaiatrh 
v*“) (No” (You, Uo”)) 

IV," (W,,") fnters~ts plane PI (Ps) and by N*“ (!I*“, 
we denote the limit point for the points at which WI“ (TVs=) 

intersects plane Ps (PI) on the side cp > 231 - fpo (cp < cpo). We introduce 

the &amcMstfc functfons PI (Q) and p* (q), q = (a, b, k, y}, whose signs 
uniquely determine the relative disposition of the separatrix manifolds by the following 
formulas 

YOU - yr’” @oU)t i = 0 
pj (4) Z yj" - T&j8 (Uj”)* j t 4’2 ’ if Nj” elcistr 

(-- i)j Pj”’ j=O,i,Z, if Nj” doesndexfPt 

P* (49 = 
YT- 1Js’ (vu+), if IY,” exists 

P*O* if N*U does not exist 

where pi, S, p*’ > 0 and pa0 < 0 , and ensure the coutinuity of pj (q) and 
p* @) when IVP and N,’ vanish. By virtue of the theorems on the continuous 

dependence of integral manifolds on the parameters the functions 
p* (q) 

Pz (4) and 
are continuous. The following properties of the characteristic functions 

stem from Lemma 2.2: 

PI (cd < 0, PO fq) <O, qE A,, A, 

PB (q) > 0, P* (CI) > 0, q E 4, i = 1,2, 3,4 

(3.3) 
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We establish certain additionai properties of characteristic functions 
p* (4) . by us@ the match&g system (2.7). 

PJ ((7) and 

L e m m a 3.2. The functioas pj ((I) and p1 (9) satisfy the ni+xtfons 

PS fb > 0, 4 E As, Au; P* (4) > 0, q E A, (3.41 

PX f@ < 0% PS 00 < 0, 4 = & 

P r o o f. The surfacet iVga and tv,” formed by the separatrtces of the match- 
ing systwn &terse& the planes PI and PI (see Sect. 21. We introduce the notat- 
ion 

Since the saddle 0, on the circle sl lia. to thr! leK(to the right) of the saddle of 
system (2.7) when Q e .As, A, (A,) wbik the trajectories of system (2.1) intersect 
the surfaces W,” and wta a the side of increase (deerease} of word&ate Y, the 
iilequalittes 

Yi > Yi” w 3kBD (29 > Yl? (v). q = Al&, 4 (3.51 

% < ?d%d* Yl@ tq< YI‘ (v), q e 4 

are valid. We establish (3.4) by using (3.5) and allowtrag for the relative d@x&too 
ofswf%C!es qa and w;’ thc~~~~ofthevcctotactdof~(2*1)onwwn 
and the property of decrease (increase) of coordinate aloag the trajectodcr when rv < 
0 (u> 0). 

The proof of Theorem 1 follows from (3.5) and (3.41, the propwtiea of functions 
P& and P,,,(q) when h = 0 (Kt Tb0ml-i 1 in ~lOj)axtd &e Cat&y-thewem on 

the zeros of co&.inww function. when b > a there &a&as a merging of the three 
bifurcation surfaces I&j at y = 0 (sea point p in Fig. 4(3)f by vitie of the symme- 
try of system (2.1) relative to the replacemcatr Y = 7 y”, Cp = --QiD, # = 

- y”+ v = - v”. To the merging of surfaces &’ correapo&s a contaw , r in 

phase space, composed of the Os-, @- and 9% -loops. 
T h e o r e NIX 2. 1) When b > a (b > u, y = 0) at least one 

L genesated as parameter iz grows from zero to infi.r&ty. 
4p” (cp’)-cycle 

2) System (2.1) h8s at least 
one CD” -cycle in the parameter domain A, . 

Proof. 1) Byvi&eofthe t$ctr~ of manifolds wIu and w” of system 
(2.4 when h =O (weTbecwm1tnfl~~thereexiatsasurface wl = (q,J!, 

Q 1 g, cz sl, Y = Y (% e > 0 (< Oh v Ez Gf W,p)), p=.t*c fe g, I w- 
the trajectories of system (2. l) intersect without coatact on the side of increase (decrea- 
SeIofcoordinate y. When X= a<1, byvirtueefthe cos&&wa QspondGnce 
of the solution of integral manifolds on the parameter, the vector field of system (2.1) 
on surface u, is odex&d in the same way as when k = 0. III G: (GB2) we con- 

struct a domain K,@‘, periodic in q and ~~orno~~c to a torus, whose boundary 
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is composed of 20, and of the following rurfacea: 

Ut = (cp, y, u 1 q & s, y E G,, v = vi*}, i = 192 

Q = {v, Y, VI cp E S', ;61 = ~a“ bl"), v=GtJ 

We denote the surface Iis,O n P (P = {Y, V 1 Cp = (P” = c*n& (if, V) E Gs)) 
by 9’ , By virtue of system (2.1) the inane rp,’ = go > 0 f< 0), 
is vatid for any trajectory (%I (t), I(0 @), VO it)) E R,@ and the vector field on 
&&W is directed toward the interior of gllo (Lemma 2.1). Therefore, the trajectories 
of system (2.1). which genera- mapp&g T, take # fnto f&If and c~nreq~ently, 
system (2.1) has at least one ‘p’ ((pp)Wycle in domain,&@ According to ClO& when 
h = 0 system (2.1) does not have cp’ (Q*)-cycles when b > 4 (b > a, y = 0) 

while the surface q gm off to Mnity. Co=epuently, theI ‘P1 (cP$)&ycle wg 
for L =e e,goesofftoinfinityase*O* 

2) By qnstruc~ng a domain K,” with boundary a&@ = t?G,l IJ w'(w' is 
the surface formed by a cycle of the matching system (2. “I)), we establish, completely 
analogously to the preceding, the existence of at least one rp’ -cycle of system (2.1) 
with paxameter values from domain A,. 

Note. Theexfstenceofa tp' (tp) -cycle hat been established here with the 
aid of a mapping of a disk into itself, which, in general, can have a complex nature, 
for instance, does not contain stable pointp. Allowing for this po&bility, a set located 
in K,@ io called a stable set cp,l @a’) (see Definition 2 of a “stable cp -cycle” in 
1111). The cycles exfttlng fn accordance with theorem 1 b&ng to set tp$ or 9,” 
or coincide with it if there is only one of them. 

The stable set cp: vanishes as ti parameters vary from the domains i = e < 
1 and A, tothe domains b,,d,,A~ . Consequently, a bifurcation set, correa- 

pending to the vanishing of cp,’ , exWs. Since by Lemma 2.1, cp: cannot vanish 
at infinity, the vanishing of set ’ cp, is connected, for the points of parameter domain 

cf , tijrttt a bifnrcatiaa of the q? -loop, of domain au , with a b&cation of cycles, 
and of domain & , w&h a bifurcation of the vanishing of the complex stmcture in a 
neighborhood of the cp’-loop. 3y similarly examining the behavior of set cpp, 
e&&g for h = e (Theorems 2 and 3 from [lOD and vanishing for parameter values 
from domains Ai (i = 1,2 ,***, 6)) as well as the behavior of the 0 -cycle, 
exisKng by virtue of (2.6) for 8 > m (y) fb - a) - 3L > 0 and vanishing for 

x = 0, we establish the addftfonal beak, different from II$ , described 
in Sect. 1. Under the aasumpKon that the Cf are single-valued, the additional bi- 
furcatians in domain ozl are bifurcation surfaces of multiple cycles (Fig. 4 in Sect. 1). 
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