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A qualitative investigation is made of a system of nonlinear third-order diff-
erential equations, being a model of a phase synchronization system, The
existence is established of bifurcation surfaces separating the parameter space
into domains for whose points the system is globally asymptotically stable,
contains cycles, has a complex structure (contains a denumerable set of saddle
cycles), etc,

1, Introduction, Basic results, The task of analysing a typical
phase synchronization system reduces to the investigation of an operator equation of
the form [1].

po+ K@ IF(p) —11=0, p=d/dt (1.1

where @ is the phase, F () is a periodic nonlinearity, K (p) is the transfer func-
tion of a low~frequency filter. The task of a qualitative investigation is the complete
separation of the parameter space into domains corresponding to different qualitative
trajectory patterns in phase space and has been solved in the case of a second-order
Eq, (1.1)[2,3] of the form

9"+ A+ aF)Q + F(p) =17 (L2

for the class of sinusoidal functions occuring in applications,

In the case of Bq, (1.1) of third order and higher this task of " complete separat-
ion” can become meaningless because in principle complex structures can exist in
the phase space, while domains filled with an infinite set of bifurcations [4] can
exist in the parameter space, Here, instead of a complete separation it is possible
to state the qualitative investigation problem in the following way:

Problem 1, Determine a separation of the parameter space into domains
in each of which the dynamic systems is either a Morse —Smale system (a structur-
ally-stable system with a finite number of equilibrium states and periodic motions)
or a system with an infinite set of periodic motions,

This problem relative to (1, 1) is of interest in connection with separation the
domain K of parameters, for whose points Eq, (1,1) is globally asymptotically
stable, and the parameter domains adjoining it (see [5-7] and others for sufficient
conditions for the global asymptotic stability of Eq. (1,1)). The question on the
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bifurcation of 2 saddle separatrix loop of a third~order Eq, (1,1) with a transfer funct-
ion K (p) (written in a form suitable for use subsequently)

K (p) = (ap + 1)(bp* + p + A)? (L.3)

was numerically analyzed in [8,9] by the adjusting method. However, both Problem
1 as well as the question on the boundary of domain K were unresolved in [8, 9],

In the degenerate case of Egs, (1.1) and(1,3) with A =0, corresponding to
the synchronization system sought, when domain K is absent for vy > 0, a qualitat-
ive investigation of (1. 1) and (1,3) was made in [10], For an Eq, (1.1) of arbitrary
order and, in particular, for the case of (1, 3) with b < s and certain other additional
constraints, the existence of principal separation domains in the sense of Problem 1
was established in [11] by using matching systems of lower dimension,

Below we investigate qualitatively a third-order system (1. 1), (1.3) of the form

=9y =3z 2= yp—F(9)— Ay —aF'y —z] (1.9

in the domain D = {y, a, b, A} of positive parameters, We asmume that the funct-
fon F (g) & C® and satisfies the conditions

F(¢)=F (@+2n), —F (¢) = F (—9), F' () > 0,9 & (— @0, po) (19
F’ ((P) <0’ (P E ((Pm 2“ - Q)o), F' (‘Po) = 01 F (q)ﬂ) = 1
FFiog<0, olg,n), F'(@ <0, 9& (—o ¢o)

Under these conditions system (1,4) with y <C {1 has two equilibrium states: O, (@
=) y=z2=0)and O: (9 =9s(y), y=2=0), where ¢, and @
are roofs of the equation y — F (¢) = 0 on the half-open intervals [0, ¢,) and
(Pos 2], respectively, The system’s phase space G = S X R*® is cylindrical
We introduce the notation m () = F’ (¢;) and 7 (y) = —F' (¢,). Weshall
designate nonwandering trajectories of oscillatory type as o-trajectories, of rotary
type with positive rotation of phase ¢ as ¢'-trajectories, and of rotary type with
negative (reverse) rotation of phase @ as @ -trajectories,
When b = {0 system (1,4) degenerates into a two-dimensional system correspond-
ing to Eqs. (1,2), for which the separation of the parameter space Do = {A > 0,
T>0, — oo < a< oo}hasbeen obtained in [3]1(for F = sing such a separation
in the plane A, d= —ak~! was given by Bautin [2]). Since this separation is used
below, in Fig. 1 we present its qualitative form in the plane (%, y), a = const for
(1) a>0, (2) a=10,(3) a <0, The structures of the separation of cylinder §* X
R by the trajectories of Eq. (1.2) is shown in Fig, 2 (the structures labelied by the
letters K, Lg, . .., correspond to the parameter domains labelled by the same letters
in Fig, 1), Strcture K corresponds to the global asymptotic stability of Eq. (1,2),
The bifurcation surfaces Io!, II,2 and II,° correspond to the bifurcations of the
¢'~ ¢'~and  o-loops of the separatrix, respectively.
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When ¢ > 0 the saddle index of the saddle changessignand divides I1,! into
two parts, for one of which a stable ¢'-cycle goes into @' ~loop, while for the
other an unstable  ¢* -cycle is generated from the  ¢* -loop, merging then with
astable @' -cycle on passing through the surface Co'. For A = —am (y), e <0
(the dashed line in Fig, 1(3)), a change of stability of O, occurs, as a result of
which a stable (the Liapunov index is negative) o -cycle is generated, going into
an  o-loop.

As a result of investigating system (1, 4) it has been established that the bifurcation
surfaces IIo’ (here and below, j == 0, 1, 2) are preserved under an increase  of
parameter b from zero, More precisely, there holds

Theorem 1 Foreach function F (@) satisfying (1.5), in D there exist
surfaces I1y' = {v, a, b, A | py (a, b, A, y) = 0} comesponding to the o~ ¢'-
and @®-loops of the separatrix of the saddle of system (1,4). The disposition” of
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II,' onthe plane (A, ) (b, a = const) for b << a qualitatively coincides with
the disposition of the bifurcation curve II,' of system (1.2) witha > O,for & = a
it cotncides with the disposition of curve IIo! of system (1.2) with 2 = 0, while
for b >a the disposition of I, coincides with the disposition of Ily’ of system
(1.2) with a << 0.

Theorem 1 is proved in Sect, 3,

The different nature of the behavior of the trajectories of system (1. 4) under the
collapse of the separatrix loops in a neighbothood of surface Il is determined by
Shil'nikov's theorems [12, 13]. We separate the parameter space D into three domains

¢ ={pabr0<r<1i, b>a h>nE)b+ a) — 2b7)
o= {y,a, b A|n{y) >b b>ar<fab n),a > @),

n’ = sup n(y)
00, 1)
o ={pabi|ln(WM>blb>aeflebr<<ri<n@bd+
a) — 2b71)

where § (a, b, n) is a positive root of the equation 4b (A — an)® — (A — an)?

+ 18bn (A — an) -+ 27n*b® — 4n = 0 relative to A . If these domains divide
the bifurcation surface of a separatrix loop into three pieces, then, according to
[12, 13], the bifurcation properties of each of them having the codimension 1  are
different, Figure 3 illustrates these properties by example of system (1,4) with b=

@ and @*> (n%)1, when the bifiurcation
surface II,' intersects all three domains
¢*, 0¥ and o° In particular, the condit-

7 jon My N o= 0 yidds the existence of

! s domaind.’=(y, a, b, A psa,b. A, V)< 0°

6 Ty containing an infinite set of bifurcations,

- For parameter values from domain  d/

\ 6° S ¢’ system (1.4) has a complex trajectory struc~
\ N ture containing, respectively, a demumerab-~
}, 5° N 1e set of saddle 0=y ¢l-and ¢? -cycles.

AN \ Using the properties of equilibrium states

64 N \ and of separatrix loops, Lemma 2,1—2,3,
~ \ and Theotem 2 on the limit set {for brevity

A ft{scalled a stable @' (¢*)-cycle in [11]).

. with the aid of a continuous variation of

Fig.3 parameters from some strctures to others we
establish the existence of the following bi-
furcation sets distinct from II, .
1) When b >¢e in D exists a smirface R corresponding to the change  of
stability of equilibrium state O, and to the generation of a stable ¢ ~cycle, When
b, a = const the disposition of R on the plane (A, y) qualitatively coincides
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with the disposition of curve A = —am (y) (a << 0) of system (1. 2) (the dashed
line in Fig, 1(3)), ‘

2) In domain o% exist bifurcation sets C,’ on which befurcations of the o=,

@' and @®-cycles take place, The bifurcation sets C;' are bifurcation surfacec
of multiple cycles if the number of cycles in the toroidal domains is taken mod 2.

3) Under a variation of parameters from domains d,’ to domains A, (i = 1,
2,. .., 7) in which the comesponding cycles are absent, the complex structures
vanish, Consequently, bifurcation sets exist, being the boundaries of domains D/

D d. corresponding to the complex structures of system (1.4). The nature of the
boundaries of domains D’ is not clear, just as the relative disposition  of these
domains and of sets C,’ is not clear,

Let us separate space D , asuming for simplicity that c/ s is single-valued,

If the surfaces IT,’ are wholly located in domains ¢* and ¢* (for instance, when
< (0, b < —2% + 147 + 2 (n) ] et = (n), b=a),
then the surfaces (' are additional bifurcations, In this case the qualitative form
of the separations when b, @ = const isshowninFig, l1for (I) b<<a, (2) b
=a, (3) b>a. Itisthe same as in the two-dimensional case when b = (
(system (1.2)). Thesuwface C,' adjoins II,! ontheset II,' (| I, where I‘
is the common boundary of domains gu and ¢* (Fig, (1)), In addition, C,!
also adjoin II,' at points for which in G the separatrix W,» approaches sadcne
O, along a nonfundamental direction, To denote the separation domains of space
D and the separation structure of space G corresponding to these domains we retain
the notation of the corresponding domains and structures of the two-dimensional system:
K, Ly, . .(see the description of structures K, L,, . .. in[11)), When surface
Iy is located in all three domains o%, ¢* and o° (for instance when 4% >
(n°), b= a), the separation of D is shown in Fig, 4for (I) b<<a, (?) b=a,
(3)b > a . The domains D, are shown hatched, while the bifurcation surfaces
Cy are by convention depicted adjoining D_. The qualitative patterns for
domains 1,2, ..., 7 inFig, 4 are easily re-established by passing into them from
the domains K, M,, L,, . . . through the appropriate bifurcations, For example,
four cycles are generated by passing from K, into domain 2 through point ¢ : two
stable ¢'~ and @*—cycles and two saddle gl.and ¢®-cycles. Domains 1 —7
vaunish as parameter b increases,

The parameter domain K corresponding to the capture domain of the  phase
synchronization system is delineated by bifurcation surfaces: of the separatrix loop

(I1,Y), of the multiple @' -cylces (Cy), of the change of stability of equilibrium
state O, (R), and by the bifurcations of the @' -trajectories, leading to the origin
of the complex structure, Thus, we have succeeded in obtaining en overall separat-
ion of the parameter space of system (1,4) as a whole by using the proof of the ex-
istence of separatrix loops, Lemmas 2,1 —2,8, Theorem 2 and assertions from [12,
13], although with certain restrictions connected with the principal difficuties inher-
ent in multidimensional systems,
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2 Investigation of the system. System(l.4) is examined below:
in the parameter domain D = {y,4, 5, A |0y <1, b >a, L >0}
By a change of variables 2z and y and of time

z2=v— bWy —abl[F () — 7], y=aMbrhyy, t=
Bl

retaining the previous notation, system (1, 4) is transformed to the form:

9 =y, ¥y =v—F(g)— (ab)?dy + baW (2.1)
v o= —(ab)~h (1 — 8)v — b2 (8¢ — § + Ab)y +
b1 (ab)s (@ — b — a)IF (q) — v}
271 (471 — Ab)A, A < (4B)
b = {M, A > (4b)
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Let us analyze system (2, 1) equivalent to system (1.4), For A > (4b)™ we consider
the matching system

y = —a'lbhy 4 balv + p + sgu v (2.2
¥ = —(ab)~ (1 — Aa)o + Ab (@ — b — Aa¥)y —
b (ab)™r (@ — b — Aa®)(y + sgu V)

System (2.2) is a piecewise~linear system, continuously spliced when v = 0 , speci-
fied on the phase surface (¥, V). The trajectories of system (2. 2) generate a mapping
of the segment 7 = {y, v|y & (—ATa~"b'+ (1 — y), — o), v =0} onto
itself, It can be shown that this mapping has a unique stable fixed point correspond-
ing to the asymptotically stable cycle €° of system (2.2), whose equations in para-
metric form are

v = sgn vr1b24A (Aa® + b — a) exp [—271 (ab)~/*0] sin rO (2.3)
y = sgn vA [27 (ab)~"/r" (2ha — 1)sin 10 —
cos r@lexp [—271 (ab)~/0] + A7la~b"r (1 + vy sgn v)
A = 207 Wsg~ 1 {{ — exp [—n (4Ab — 1)-4]}7
r== 21 (ab)~r (4Ab — 1), 0O

The trajectories of system (2, 2) in space G form cylindrical surfaces whose directrices

are formed by the trajectories of system (2.2), while the generators are parallel to the
@-axis. By G, we denote the sub-domain of G, bounded for A >> (4b)F

by the surface T° = C° X §' = {9, y, v|o & 8, y,v & €°} andfor A<

(45)1 by the surface T° = {q), Yr v l eSS y=y'%v= vt°}’ where

¥ = (—1) 87 (1 — 8)%b (ab) (1 + (—1)' )
b = (=) 5 (4 — 8)3ab + b — ) + (—)), i=1,2

Lemma2,1. Theset Q of nonwandering trajectories of system (2, 1) is wholly
contained in domain G,. The vector field of system (2.1) on T° is directed to
the interior of &,.

Proof. ForA < (4b)™! we consider the direction function w = 2-1;3, Outside
the domain G; = G N {»,° < » < »y%}the derivative w°, taken relative to system (2. 1),
is negative and, consequently, the trajectories outside domain Gy as 7 -» oo, inter-
secting the levels v == const, pass into G, and do not leave it. Then for any semi-
trajectory (@ (1), ¥y (1), » (¢)) & G, the fulfilment of the inequalities (—1)¥y°' (1) < 0
for (—1) > (—1)ly;* follows from the second equation in (2. 1), Fromhere and from
the behavior of the trajectories of system (2. 1) outside domain G, follows the lemma's
assertion when X < (4b)* . Consider the domain A > (45)"1, We compare the
vector fields of systems (2. 2) and (2. 1)

(%) X (%%)(2.1) =sguv+F(9) 2.4
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dv dv
('87)&.3) - ("&?) @ =Y (@) (Aa* 4 b—a) [sgno + F (g)]

From (2. 4) we get that the trajectories of system (2, 1) outside Gy, intersecting with-
out contact the cylindrical surfaces formed by the trajectories of system (2.2) as 1 —
oo, pass into G, and do not leave it.
Corollary. The inequalities

—_p < BaW (1) < pgy, A (4D)7 (2.5)
| bty (1) | < par b > (4)

b— ad .
pom Lot (4 (— ), 1=1,2

g == AVE <:ﬂ;_.;§; 59 oxp [— (4hb — 1)~ arctg (4hb — 1)¥4]

are valid for any semitrajectory (9 (2), ¥ (§)y v(#)) = G, of system (2. 1).

Equilibrium states. When A > m (y)(b — a) the point O, is stable

(250 << 0, Re x;, << 0), while whea ) << m (y) (b — a) it is unstable (%, <

0, Rexl", > 0) (x,® and %, are the roots of the characteristic equation
of system (2, 1) for O, and (,, respectively, =1, 2, 3),, The variation of
the qualitative structure of the neighborhood of equilibrium state O, when passing
into D through the surface R = {y, ¢, 5, A |0< vy <L, 0> a, A =m (y)
(b— )} is determined by the sign of the first Liapunov index [14] which in the case
being examined has the form

L = Cla?*m (i + 4abm)F”’ (¢,) — ((@b)~"/++8m (b — a) + (2.6
6bm)(F" (g))’l, C >0

By virtue of (1.5), L <C 0 and, consequestly, under the change in stability a single
stable 0 -cycle is generated from O, .
The equilibrium state O, is a saddle: when A > f(a, b, n) the point. 0, is
a saddle-focus (k¥ > 0, — Rex{l) < 0, Im & 3= 0), while when A < £ (a,
b,n) itisasaddle (%¥ >0, — Re »M <0, Imx{ =0). Asis well
known, two local manifolds pass through O, into its neighborhood: the two-dimens-
ional surface W,*, consisting of O* -curves, and the unstable W,“, being a one-
dimensional O- -curve passing through O, and consisting of two separatrices W,*
and W,* located on different sides of W,’. Analysis of system (2.1) linearized
in a neighborhood of O, shows that the separatrix W;," goes into the domain G,
=G, N {¥ >0} and W, goesinto G =G, [] {y <{0}. The extensions
of local manifolds W,* and W;* of equilibrium state O, by the trajectories of
system (2, 1) are denoted W* and W™ = W,* |J O, U Wy, respectively.
The Liapunov function. We introduce the notation for mbdomains

D
of Alz{v»a,b,xl?=0,b*a,k>0}
A,“'—'{?,d,b,ll‘??—o, b>a, A> bsup F' ()}
pefo, o)
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A,={7,a,b,l|0<v<1, b =a,A>0}
A4={Y,a’bv7'|0 <’l’<1, b>as A}bsupF’((p)}
o<[o, 2%)

We consider a Liapunov function [5] and its derivative relative to system (2. 1)

L4
V=v+p{ 1F@®—va
[ 41

20ady? - 2-lg (av — dy)3, B=a’\, b=a
e {2"”" [ + (aby's (1 — 8)y1* + 2 Mhay? -+
+ (ab)/*[F (@) ~ 7]y, B=1-+Aa, b>a
V= {--(av——t!&y)2 b=a
— | =57 (@) (b — bF’ (@) y* — (ab)'B[F (@) — 712, b>a

We obtain the next statement with the aid of this function,
Lemma 2,2, System(2.1)
1 has the structure K in the parameter domains A; and A,;
2. does not have o-cyclesin Ajand A, , while the domain

Q+={g, 4, 0| V(@10 < o<} (Ci=7V,(9,0,0))

belongs to the domain of attraction of the stable equilibrium state O,
3. does not have @*-cyclesin A, and A,,
Matching system, We consider the auxiliary system

O =y, ¥V =v—F@ —hy, V=0 2.7

For each v = const system (2.7) is system (1.2) with @ = 0. The separation
of the parameter plane (A4, T,) has been shown in Fig. 12). The bifurcation curve
T1 (M) (Y1 (A°) = 1) comesponding to the @!-loop divides the plane (Ay, 7,)
into two domains K and M,. Inspace G, the trajectories of system (2. 7) form
surfaces not changing with respect to v . By W! we denote the surface formed by
the cycle of system (2, 7), existing in parameter domain M;, whileby W, and
W,® (W,y* and W;®) we denote parts of the surfaces formed by the @ - and @-sep-
aratrices of the saddle of system (2.7), located in the domain . G,! (G,?). We ex-
amine the surfaces W;* and W, before intersection with cylinder Py = {o, y,
vies Sy ve RY, y = 0).

In D we introduce the subdomains

A.={v.a.b,x|v1(7°_;)+ui<v<1,—,,—?f<x°}

d 8
= [y,a,b,A|— & L NN T
As {va I 1+p'l'\?<1 m>k VI(Ir——ab)'!'
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B <?<?1(—17%—-5')+P{,-‘7%—§"<7‘°}
By = {30,010y <1 —ppy = >

7~°0<v<vx(-£-3—»-)—ue,-3—,%;’=-<?~°}

t=12;1=2, 3;

Lemma 2.3, Inthe parameter domains A; and Ag(Ay) system (2.1)
does not have @* (¢')-cycles; as ¢ — — oo the manifold W?*, intersecting 7°,
goes off to infinity in domain G,? (G,).

Proof. Letuscompare the vector fields of systems (2.1) and (2, 7) when 2, =
(aby™/%6 and Ve =7 — b; (Y« =7 + p1). Using Lemma 2.1, we get that in the
parameter domains Ag and Ag (A,) the trajectories of system (2. 1) intersect  the
surfaces W;® and W;* on the side of increase (decrease) of coordinate y, without
having contact with them, We establish the lemma’s assertion by taking into account
that surface W, (W,®) goes off to infinity in domain G, (6,%) (Fig. (1), (3)),
while by virtue of the equation ¢° =y in (2.1) the coordinate ¢ decreases(increases)
along the trajectories when ¥ <0 (y > 0) .

3. Bifurcations and cycles, Examining system (2.1) inthe space
C={0, 40|00 <P @ + 2, (y,v) = R}, weprove an auxiliary
lemma,

Lemma 3. 1, In parameter domain D the separatrix W,* intemects the
plane P, = {y,v| @ = o, (y,v) = R*} on the side > @, at the point My (y;,

Vs) & G,* and the separatrix W," intemsects the plane P, = {y,v| ¢ = 2xn
— @g, (¥, V)&= R?} ontheside ¢ < 2n — @ atthe point M, (y,, v))
G,'; the surface W?* intersects the plane P, and P, along, respectively, the curves
Ny =y’ (v)) and N,* (y = y,° (v)) going off to infinite and dividing each of
the planes into two parts,

Proof, We consider the Liapunov function V in the domain  Go = {@, ¥, v
| 9o <@ <21 — o, (y,v) = RY . Since according to (1.5), F' (9) < 0 in G,,
the derivative V" < 0 and, consequently, system (2,1) does not have o-cycles in

G, . Hence by virtue of that fact that coordinate ¢ increases (decreases) along
the trajectories of system (2. 1) when y > 0 (y < 0), while separatrix Wy (W)
locally goes in domain G,' (Gv?*), it follows that separatrix W ¥ (W,%) intensects the
plane P3(P;) atpoint My (M,). Let us consider the disposition of surface W* in

G, . By virtue of (1.5) a number lo > 0 exists (for example, [, = 1 for F=

sin ¢ such that the estimate

L@<Fg—vy<hip 3.1
higy=—1—y-+lg(—p+2n— ), Li{Pr=i~7+ l({pPe— ¢)

is valid for any @ € [@o, 21 — @] .
We consider the linear systems
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o =y, ¥ = —1; {§) — (ab)™ Oy + a b» (3.9

v" = —(ab)" (1 — 8y — b3 (8% — 8 + Ab)y +
b (ab)™* (@ — b — ad)l; (@), i=1, 2

In parameter domain D each of the systems in (3. 2) has a saddle equilibrium state
each, whose separatrix surface is the plane W;*. Plane W;® joins P; and P, and
divides each of them into two parts. By virtue of (3, 1), when y == 0 the trajectories
of system (2. 1) intersect the plane W,* (W;®) on the side of decrease (increase) of
coordinate ¥ when y >> 0 and on the side of increase (decrease) of coordinate y
when y <C0. Since on the circle §! the equilibrium state O, lies between the
equilibrium states of systems (3. 2), the surface W* is located in G, between W,*
and W;* and, consequently, joins the planes P; and P,, separating each of them
into two parts,

From Lemmas 2,1 and 3. 1 it follows that the separatrix W% (W,%), intersect-
ing plane Py (P,) on the side @ < 21 — @4 (¢ > @), hits either onto plane
Py (Py) ontheside @ < @y (@ > 2n — ¢,) or, intersecting cylinder Py,
onto plane P, (P;) on the side @ > 21 — @ (¢ <C ) or onto cylinder P, and
can intersect Py andi P, (P,, and P;) several times.

By N*(y,", ") (N,* (3", v,¥)) we denote the limit point for the points
at which sepacatrix  W,* (W,%) intemects plane P, (P,) andby N,* (y,*,
va") (Vo* (¥o", vo")) we denote the limit point for the points at which W,* (W,Y)
intersects plane Py (P;) ontheside @ >2n — ¢, (p < @,). We introduce
the characteristic functions 0;(¢) and p, (9), ¢ = (a, b, A, 7), whose signs
uniquely determine the relative disposition of the separatrix manifolds by the following
formulas

Yo' — ' @), j=0 "
B@) = |yt —ytp, j=1,2" N e
(—1p8 j=0,1,2, if N;* does not exist

y*u"'" yz. (v“.), if .:V*u exists
Pu (9) = o u
Pu's it N, does not exist

where p;, 2 Pu- >0 and po® < 0, and ensure the continuity of p; (g) and
P« (9) when N;* and N,“ vanish. By virtue of the theorems on the continuous
dependence of integral manifolds on the parameters the functions  p; (¢) and

P« (g) are continuous. The following properties of the characteristic functions
stem from Lemma 2, 2:

P1(9) <0, po (9) <0, ge= A, A, @9

P2(9) >0, pe (99 >0, g Ay, i =1,2,3,4
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We establish certain additional properties of characteristic functions p; (g) and
Px (@) . by using the matching system (2, 7).

Lamma 292 Tha funnéinne n. an
i e AAA AL AW ANAAEN LANELS

FFAY A n anbdafe, il
Ve Se Pi\y) sue e

[n wbd s T o B i e
\ ALY WIE T S

\
i

P9 >0, g Ay, Ay Pe () >0, g= A, @9

P1(2) <0, p(9) <0, g = A,

Proof. Thesurfaces W, and W, formed by the separatrices of the match-
ing system intersect the planes P, and P; (see Sect, 2), We introduce the notat-
ion

Wia' 0 Py aNia(y myi“@))q Wiw ne; "Ni@ (y == yi‘“ {z))y i==1,2

Since the saddle O, on the circle S! lies to the left'(to the right) of the saddle of
system (2,7) when ¢ & Ay, Ay (A;) while the trajectories of system (2, 1) intersect
the surfaces W;® and W;* on the side of increase (decrease) of coordinate ¥, the
inequalities

n>uEm) B O >u'e), ceiy, A, (3.5)
Bl @), n O)<n' @), g4,

are valid. We establish (3. 4) by using (3.5) and allowing for the relative disposition
of surfaces W,* and W;° the orientation of the vector fleld of system (2, 1) on them
and the property of decrease (increase) of coordinate along the trajectories when y <<
0 (> 0).

The proof of Theorem 1 follows from (3, 5) and (3.4), the properties of functions
Pj(g) and p,(q) when A =0 (see Theorem 1 in [10Dand the Cauchy thearem on
the zeros of continuous functions, When b > a there obtains 2 merging of the three
bifurcation surfaces II,7 at y = O (see point p in Fig, 4(3)) by virtue of the symme-
try of system (2, 1) relative to the replacements ¥ = — 7°, ¢ = —¢°, y=

— §°, v = — v°. To the merging of surfaces II,’ corresponds a contour . I' in
phase space, composed of the O,-, ¢'- and  §* -loops.
. Theorem 2, 1) When b>a (b>a,y=0) atleast one @' (¢%)-cycle
is generated as parameter A grows from zero to infinity, 2) System (2. 1) has at least
one ®'-cycle in the parameter domain A; -

Proof. 1) By virtue of the disposition of manifolds W," and W* of system
(2.1) when A = 0 (see Theorem 1 in [10]) there exists a surface w, = {Q, J,
viee 8 y=y(9,v)>0(<0), v =G} (G7), perodicin ¢, which
the trajectories of system (2. 1) intersect without contact on the side of increase (decrea-
se) of coordinate y. When A = & <€ 1, by virtue of the continuous dependence
of the solution of integral manifolds on the parameter, the vector field of system (2. 1)
on surface W, is oriented in the same way as when A = 0. In G} (G, we con-
struct a domain  K,®, periodic in @ and homeomorphic to 4 torus, whose boundary
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is composed of w,; and of the following surfaces:

u={ppv|iecs, ys6, v=u} i=12
Wy = {(Pﬁyivl‘PESl, y=yg°(y1°), Uer}

We denote the surface K.© 1 P (P = {y,v| ¢ = ¢° = const, (y,v) = G,)})
by g* . By virtue of system (2.1) the inequality @, = y, > 0 (< 0),

is valid for any trajectory (Qo (2), ¥o (#), Vo () € K, and the vector field on
dK,® is directed toward the interior of K,® (Lemma 2. 1), Therefore, the trajectories
of system (2.1), which generates mapping 7', take &' into itself and consequently,
system (2. 1) has at least one @' (@®)-cycle in domain K,® According to [10], when
A = 0 system (2. 1) does not have @! (¢*)~cycleswhen b > a (b >a,y=0)
while the surface W, 80es off to infinity, Consequently, the, @' (§%)_cycle existing
for A = e, goes off to infinity as &€ = 0,

2) By constructing a domain K,® with boundary 9K,® = 0G,! |J WHW! is
the surface formed by a cycle of the matching system (2, 7)), we establish, completely
analogously to the preceding, the existence of at least one @' -cycle of system (2. 1)
with parameter values from domain A,

N ote, Theexistenceofa g (p?) -cycle has been established here with the
aid of a mapping of a disk into itself, which, in general, can have a complex nature,
for instance, does not contain stable points. Allowing for this possibility, a set located
in K," is called a stable set o, (p,%) (see Definition 2 of a "stable @-cycle” in
[11]). The cycles existing in accordance with Theorem 1 belong toset ¢! or .2
or coincide with it if there is only one of them,

The stable set @,! vanishes as the parameters vary from the domains A = & <

1 and A; to the domains A;, Ay, A; , Consequently, a bifurcation set, corres-
ponding to the vanishing of ¢,' , exists, Since by Lemma 2,1, ¢,! cannot vanish
at infinity, the vanishing of set @,! is connected, for the points of parameter domain

o* , with a bifurcation of the ¢! -loop, of domain o* , with a bifurcation of cycles,
and of domain ¢° , with a bifurcation of the vanishing of the complex structure in a
neighborhood of the @'-loop. By similarly examining the behavior of set @2,
existing for A = & (Theorems 2 and 3 from [10]) and vanishing for parameter values
from domains A; (i = 1,2,..., 6), as well as the behavior of the 0 -cycle,
existing by virtue of (2.6) for € > m (y) (b — a) — A > 0 and vanishing for

A = 0, we establish the additional bifurcations, different from II,’, described
in Sect. 1. Under the assumption that the C,’ are single-valued, the additional bi-
furcations in domain 6" are bifurcation surfaces of multiple cycles (Fig. 4 in Sect. 1).
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